Mucormycosis: its contemporary face and management strategies

Hsin-Yun Sun, Nina Singh

Several countries have seen rising frequencies of mucormycosis among patients with haematological disorders, malignancies, or diabetes mellitus, and among transplant recipients. Growing numbers of immunocompromised hosts, widespread use of antifungal agents inactive against mucormycosis, or other unidentified factors, could be contributing to this situation. The predominant clinical manifestations of mucormycosis vary from host to host. Additionally, risk factors specific to different subgroups have been identified, such as leukaemia, allogeneic haemopoietic stem-cell transplant, voriconazole prophylaxis, diabetes, and malnutrition. We summarise the current state of knowledge of characteristics and risk factors and discuss topical developments in therapeutic methods and strategies in the management of mucormycosis.

Introduction

With the advent of effective antifungal agents against Candida and Aspergillus spp, a growing population of immunocompromised hosts, improved diagnostic tools, and possible selection pressure from widespread use of broad-spectrum antifungal agents, mucormycosis has emerged as an important infection. Mucormycosis and entomophthoramycosis were previously encompassed by the term zygomycosis.1 Changes in high-level taxonomy in reference to molecular phylogenetic analyses have, however, led to the class name Zygomycota being replaced by Glomeromycota.2 In this new classification, all the agents of mucormycosis have been placed under the subphylum Mucoromycotina and the agents of entomophthoramycosis are now in the subphylum Entomophthoromycotina. Since the phylum Zygomycota no longer exists, the disease name zygomycosis has become obsolete.3

Mucormycotina are characterised by large, ribbon-like hyphae with only occasional septae (aseptate fungi). These fungi cause mucormycosis, which comprises severe and potentially life-threatening infections, particularly in immunocompromised hosts. Improvements in culture-based morphological and molecular identification of fungi in the past two decades have led to expansion of the number of species known to cause mucormycosis.4 Infections are, however, primarily caused by the order Mucorales and the family Mucoraceae.5

Mucormycosis was reported in the Transplant Associated Infection Surveillance Network study to occur in 9% of haemopoietic stem-cell transplant (HSCT) recipients and 2.1% of solid-organ transplant recipients.6−8 Increases in incidence of mucormycosis have been reported in several countries in the past few years.9−14 In developed countries, such as the USA, France, and Austria, mucormycosis mainly occurs in transplant recipients and neutropenic patients, although in France the frequency is rising among patients with diabetes mellitus.14−16 In India the frequency has risen from 13 cases per year in 1990–99 to 36 cases per year in 2000–04, and 50 cases per year in 2006–07,17−19 and the highest-risk group is patients with uncontrolled diabetes.17−19

In immunocompetent patients, Apophysomyces elegans has emerged as an important pathogen for mucormycosis, leading to primarily cutaneous and rhino-orbital-cerebral disease with infections and generally occurring after traumatic inoculation.20−22 Additionally, several studies from India have reported isolated renal mucormycosis due to A elegans, mostly in immunocompetent young adults.23−25 Although rare, mucormycosis outbreaks—defined as more than two cases in 2–6 months—have been reported to occur in hospitals.26

In this Review we summarise the current state of knowledge about features of and risk factors for mucormycosis, and provide updates on potential therapeutic options and strategies for the management of this infection.

Characteristics of mucormycosis

Clinical manifestations

Invasive mucormycosis is characterised by the rapid development of tissue necrosis as a result of vascular invasion and subsequent thrombosis. Disease may manifest as rhino-orbital-cerebral, pulmonary, cutaneous, gastrointestinal, or disseminated forms.1 In a review of 929 patients with mucormycosis assessed in 1940–2003, diabetes was the most frequent underlying condition (36%).27 The predominant clinical manifestations differ from host to host. Patients with diabetes most frequently present with rhino-orbital-cerebral manifestations (66%), followed by pulmonary (16%) then cutaneous (10%) disease, whereas patients with no underlying condition most frequently have cutaneous manifestations (50%). Patients receiving deferoxamine most frequently have pulmonary manifestations (28%), then rhinocerebral (26%), then disseminated disease (23%); in injecting drug users the order is cerebral (62%) then cutaneous (11%) disease, and in solid-organ transplant recipients it is pulmonary (37–53%) and rhino-orbital-cerebral disease (31%).26−28 Rhino-orbital-cerebral disease may present as rhinosinusitis, sinusitis, rhino-orbital, or rhinocerebral disease.1 Necrosis or eschar in the nasal cavity or on the palate, trigeminal and facial cranial nerve palsy,
Review

ophthalmoplegia and loss of vision signify disease progression. Intracranial complications include epidural and subdural abscesses and cavernous and, less frequently, sagittal sinus thrombosis, but frank meningitis is unusual.

Symptoms of pulmonary mucormycosis include fever refractory to antibiotics, cough, pleuritic chest pain, and dyspnoea. Invasion of blood vessels can lead to fatal haemoptysis. Clinical characteristics of pulmonary mucormycosis and aspergillosis are indistinguishable. Patients with leukaemia and pulmonary aspergillosis versus those with pulmonary mucormycosis, however, are more likely to have concomitant sinusitis, have previously used prophylactic voriconazole, and have more than ten nodules and pleural effusion on chest CT. The reverse halo sign might be an early radiographic finding of pulmonary mucormycosis.

Cutaneous mucormycosis can be acquired by direct spore inoculation or via burns or traumatic wounds. Erythema and induration of the skin typically progresses to necrosis with a black eschar. Gastrointestinal mucormycosis is rare, and only 25% of cases are diagnosed antemortem owing to its non-specific presentation. Predisposing disorders include extreme malnutrition, premature birth, and immunosuppression. Neutropenic patients might present with fever, typhlitis, and haematochezia. Disseminated mucormycosis has been reported in patients with cerebral (48% of cases), cutaneous (39%), and pulmonary (20%) disease.

Risk factors

Traditional risk factors for mucormycosis include long-term neutropenia, high-dose glucocorticoid therapy, hyperglycaemia, diabetes with or without ketoacidosis, iron overload, and use of deferoxamine for chronic iron overload in patients undergoing haemodialysis. Although deferoxamine acts as an iron chelator for human beings, it is, paradoxically, an exogenous iron supplier (xenosiderophore) to Mucormycotina and can, therefore, predispose the host to mucormycosis. However, children with haemoglobinopathies who are receiving deferoxamine for iron overload seldom develop mucormycosis. Thus, additional factors related to renal failure and deferoxamine might lead to the development of mucormycosis. Patients who receive deferoxamine for iron overload or persistent neutropenia are at risk of disseminated disease. Specific risk factors for mucormycosis in different host populations have been identified. For example, leukaemia, allogeneic HSCT, voriconazole prophylaxis, diabetes, and malnutrition are cited as being independent risk factors for mucormycosis. In solid-organ transplant recipients, renal failure, diabetes mellitus, and previous use of voriconazole, caspofungin, or both, are associated with mucormycosis. HSCT recipients who receive corticosteroids for graft-versus-host disease (GVHD) are at risk of disseminated disease. The immunosuppressive agent tacrolimus seems to offer protection against mucormycosis.

Numerous cases of breakthrough mucormycosis in voriconazole recipients have been reported. In patients with haematological disorders or HSCT recipients receiving voriconazole for prophylaxis against fungal infection, empirical therapy of febrile neutropenia, or both, breakthrough mucormycosis occurred in 0–8.9%, 0.5–5%, and 4.3%, respectively. In a case-control study, previous use of voriconazole, caspofungin, or both, was significantly associated with breakthrough mucormycosis in solid-organ transplant recipients. Of note, breakthrough mucormycosis has also been reported in patients with haematological disorders or malignancy and who are receiving prophylactic azole therapy with drugs other than voriconazole (fluconazole, itraconazole, or ketoconazole).

Several hypotheses have been proposed for the occurrence of breakthrough mucormycosis after exposure to voriconazole. Since incidence of mucormycosis was increasing even before widespread voriconazole use, changes in host immunosuppression status are thought to be responsible, and voriconazole use is thought merely to have accelerated the trend. Another theory is that virulence of Mucormycotina has increased after exposure to voriconazole. In experimental studies, survival was worse in animals infected with a Rhizopus oryzae strain exposed to voriconazole than in those infected with a strain not exposed to this drug. Furthermore, notable angioinvasion, inflammation, and expression of genes involved in stress response and tissue repair have been seen in mouse lungs infected with voriconazole-exposed R oryzae.

Treatment

Successful treatment of mucormycosis requires early diagnosis, reversal of underlying risk factors, reduction, if possible, of immunosuppression, prompt administration of antifungal therapy, and surgical debridement when applicable. Delayed initiation of an amphotericin-B-based regimen (>6 days after diagnosis) has been reported to be associated with doubled mortality at 12 weeks. In patients with diabetes, with or without ketoacidosis, efforts should be made to restore euglycaemia and normal acid-base status. Advances in conventional and non-conventional therapeutic approaches are discussed.

Conventional antifungal agents

Polyenes

The mortality associated with mucormycosis worldwide declined from 84% in the 1950s to approximately 40% in the 1990s. Nevertheless, outcomes remain dismal, particularly in HSCT recipients and in patients with disseminated disease, in whom mortality remains at 91% and 95–100%, respectively. Polyenes are the preferred therapeutic agents for mucormycosis. In patients receiving amphotericin B deoxycholate as
primary therapy, combined complete and partial response rates range from 0 to 60%, and all-cause mortality varies from 39% to 75%; in patients receiving lipid formulations of amphotericin B as primary or salvage therapy, combined complete and partial response rates are 32–100%, and overall mortality ranges from 5% to 61% (table 1).

Data from direct comparisons of the efficacy of lipid formulations of amphotericin B and amphotericin B deoxycholate for the treatment of mucormycosis are sparse. Several studies suggest that lipid formulations of amphotericin B, particularly liposomal amphotericin B, are associated with improved response rates (partial and complete) or survival. In a global clinical registry primarily comprising patients with malignant diseases (64%), liposomal amphotericin B significantly improved response rates and survival. One study reviewing mucormycosis outcomes in patients with haematological or oncological disorders reported higher survival with liposomal amphotericin B than with amphotericin B deoxycholate (67% vs 39%, p=0·02). Two additional studies demonstrated that liposomal amphotericin B significantly correlated with recovery from mucormycosis in patients with haematological malignancies. In a prospective, matched case-control study, the success rate in solid-organ transplant recipients receiving liposomal amphotericin B was increased by four times (odds ratio [OR] 4·0, 95% CI 1·73–9·36). Additionally, in a review of solid-organ transplant recipients with rhino-orbital-cerebral mucormycosis, lipid formulations of amphotericin B were independently and significantly associated with

<table>
<thead>
<tr>
<th>Study type</th>
<th>Underlying cause</th>
<th>Pharmacotherapy</th>
<th>Surgery (n/total [%])</th>
<th>Response* (n/total [%])</th>
<th>Mortality (n/total [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun et al, 2010</td>
<td>Review</td>
<td>SOT</td>
<td>First-line AmBd alone or combined</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ruping et al, 2010</td>
<td>Registry</td>
<td>Cancer</td>
<td>First-line L-AmB monotherapy 210 mg/kg daily</td>
<td>NA</td>
<td>16/17 (94)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>First-line AmBd monotherapy</td>
<td>NA</td>
<td>1/4 (25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>First-line posaconazole monotherapy</td>
<td>NA</td>
<td>4/8 (67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>First-line combined posaconazole and L-AmB</td>
<td>NA</td>
<td>4/7 (57)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Posaconazole salvage therapy</td>
<td>NA</td>
<td>5/8 (63)</td>
</tr>
<tr>
<td>Kara et al, 2009</td>
<td>Retrospective</td>
<td>Diabetes</td>
<td>First-line AmBd monotherapy 0.7–1.0 mg/kg daily</td>
<td>23/33 (70)</td>
<td>16/33 (49)</td>
</tr>
<tr>
<td>Shoham et al, 2009</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>First-line L-AmB monotherapy 1–4 mg/kg daily</td>
<td>4/4 (100)</td>
<td>0/4 (0)</td>
</tr>
<tr>
<td>Chamilos et al, 2008</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>First-line AmBd monotherapy 0.1–5.0 mg/kg daily</td>
<td>14/34 (100)</td>
<td>8/34 (23)</td>
</tr>
<tr>
<td>Reed et al, 2008</td>
<td>Retrospective</td>
<td>Diabetes</td>
<td>First-line L-AmB monotherapy 1 mg/kg daily</td>
<td>15/15 (100)</td>
<td>2/15 (13)</td>
</tr>
<tr>
<td>Singh et al, 2007</td>
<td>Prospective</td>
<td>SOT</td>
<td>First-line L-AmB monotherapy</td>
<td>2/5 (40)</td>
<td>2/5 (40)</td>
</tr>
<tr>
<td>Cordonnier et al, 2007</td>
<td>Prospective</td>
<td>NA</td>
<td>L-AmB</td>
<td>NA</td>
<td>5/6 (83)</td>
</tr>
<tr>
<td>Greenberg et al, 2006</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>Posaconazole 800 mg daily salvage monotherapy or combined therapy</td>
<td>18/24 (75)</td>
<td>9/24 (37)</td>
</tr>
<tr>
<td>van Burik et al, 2006</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>Posaconazole 800 mg daily salvage monotherapy or combined therapy</td>
<td>64/91 (70)</td>
<td>35/91 (38)</td>
</tr>
<tr>
<td>Roden et al, 2005</td>
<td>Review</td>
<td>Diabetes</td>
<td>AmBd</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Pagano et al, 2004</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>First-line AmBd monotherapy 1.0 mg/kg daily</td>
<td>NA</td>
<td>7/19 (37)</td>
</tr>
<tr>
<td>Glessner et al, 2004</td>
<td>Retrospective</td>
<td>Haematological disease</td>
<td>First-line L-AmB 3 mg/kg daily</td>
<td>NA</td>
<td>7/25 (28)</td>
</tr>
<tr>
<td>Herbrecht et al, 2001</td>
<td>Prospective</td>
<td>HSCT</td>
<td>Salvage ABCD monotherapy 4.8 mg/kg daily</td>
<td>13/21 (62)</td>
<td>8/21 (38)</td>
</tr>
<tr>
<td>Wahls et al, 1998</td>
<td>Prospective</td>
<td>NA</td>
<td>Salvage ABCD monotherapy <5–15 mg/kg daily</td>
<td>NA</td>
<td>7/24 (29)</td>
</tr>
<tr>
<td>Oppenheim et al, 1995</td>
<td>Prospective</td>
<td>NA</td>
<td>Salvage ABCD monotherapy 6 mg/kg daily</td>
<td>NA</td>
<td>4/4 (100)</td>
</tr>
</tbody>
</table>

Table 1: Summary of outcomes in the treatment of mucormycosis with different agents and regimens

SOTr=solid-organ transplantation. AmBd=amphotericin B deoxycholate. AmB=amphotericin B. NA=data not available. Lipid AmB=lipid formulations of amphotericin B. L-AmB=liposomal amphotericin B. ABCD=amphotericin B colloidal dispersion. *Partial or complete. †Receipt of lipid AmB was significantly associated with reduced mortality. ‡Receipt of L-AmB was independently associated with partial or complete response.
improved survival even when controlled for CNS involvement and the era of disease management (OR 0.09, 95% CI 0.02–0.50; p=0.006).15

The advantages of lipid formulations of amphotericin B, particularly liposomal amphotericin B, over amphotericin B deoxycholate in the treatment of mucormycosis could result from better brain penetration, reduction of fungal burden, and immunomodulatory effects, and fewer nephrotoxic effects. For instance, in animal models of coccidoidal or cryptococcal meningitis, liposomal amphotericin B significantly reduced fungal burden in the brain and improved survival compared with amphotericin B deoxycholate.50–52 Liposomal amphotericin B also yields better results than certain other lipid formulations. For example, five times higher concentrations of liposomal amphotericin B were seen in the brains of rabbits with candidosis than of amphotericin B deoxycholate.54–56 In the clinical setting, lipid formulations of amphotericin B have been independently associated with lower mortality in solid-organ transplant recipients with cryptococcal meningitis than have other forms of amphotericin B.57–59 Likewise, in a murine model of diabetes and haematogeneous \textit{R. oryzae} infection, liposomal amphotericin B was associated with significantly improved overall survival compared with amphotericin B deoxycholate.60 Additionally, mice with diabetes, ketoacidosis, and with disseminated mucormycosis treated with liposomal amphotericin B had better survival and clearance of fungi from the brain than those treated with amphotericin B phospholipid complex.42 This finding echoes lower success rates and higher clinical failure rate in patients treated with amphotericin B phospholipid complex than those treated with other polyenes.61 However, in two mouse models of neutropenia—one with invasive pulmonary aspergillosis and one with invasive pulmonary mucormycosis—5 mg/kg amphotericin B phospholipid complex daily delivered higher concentrations of amphotericin B to the lung tissues than did 5 mg/kg liposomal amphotericin B daily, and early control of infection and improved fungal clearance were achieved.62–63 At higher doses, though, no differences were observed between the two lipid formulations.

Survival after infection with a Mucormycotina organism requires a tightly controlled immune system that straddles a fine line between successful eradication of the invading pathogen and limitation of the damage to self-tissues from a dysregulated immune response. An imbalance in either direction could lead to detrimental outcomes.46 In addition to improved CNS penetration, unique immunomodulatory characteristics of specific antifungal agents might be responsible for the differences observed in outcomes.46 Although amphotericin B deoxycholate increases the expression of inflammatory cytokines, the lipid polyenes downregulate or have no effect on expression.64 A lesser effect on inflammation might lower the risk of inflammatory tissue pathology and be advantageous to the host.46

Lastly, lipid formulations have good safety profiles. Side-effects, particularly nephrotoxic effects, related to amphotericin B deoxycholate have been associated with increased mortality, prolonged duration of hospital stay, and increased total cost of health care.65–67 Despite various definitions of nephrotoxic effects, several studies have shown that liposomal amphotericin B has a better safety profile than amphotericin B deoxycholate.44 The hydrophobicity of lipid polyenes enables effective drug delivery to the sites of infections and can lower the risk of nephrotoxic effects. Overall, liposomal amphotericin B and amphotericin B phospholipid complex have similarly low nephrotoxicity, but in one randomised study, nephrotoxic effects were less frequently seen in patients receiving the former.68–71

\textbf{Triaazoles}

Posaconazole is the first azole possessing a broad spectrum of activity against Mucormycotina. \textit{Rhizopus} spp and \textit{Cokeromyces recurvatus} have higher minimum inhibitory concentrations (MICs) for this drug than other species, and \textit{Mycocladus} spp are the most susceptible.72 Nevertheless, activity in a clinical setting depends not only on the MIC but also on the achievable drug concentrations. A review summarised 23 published case reports of patients with mucormycosis who received posaconazole as salvage therapy, with or without amphotericin B, and a partial or complete response was reported in 19 (83%) patients.73 Responses to posaconazole salvage therapy were seen in one report in eight (33%) of 24 with malignancy and 11 (46%) of 24 with haematological diseases,74 and in another in 42 (46%) of 91 and 13 (14%) of 91, respectively.75 Data on the use of posaconazole monotherapy as the first-line treatment are sparse. Two studies reported partial responses in three (60%) of five and complete responses in four (67%) of six patients.28,31 but these data must be interpreted with caution owing to the very small numbers of patients.

Posaconazole is less active than amphotericin B as a treatment for neutropenia in mice infected with \textit{R. oryzae};76 isolates from this species are the most frequently recovered in cases of mucormycosis. Additionally, compared with placebo, posaconazole monotherapy does not improve outcomes in mice with neutropenia or diabetes and ketoacidosis that are also infected with \textit{R. oryzae}.57 Thus, posaconazole is not recommended as a primary therapy for mucormycosis.44 Furthermore, combined posaconazole and amphotericin B deoxycholate or liposomal amphotericin B offered no survival benefit over amphotericin B deoxycholate or liposomal amphotericin B alone.76,77

In two randomised trials of posaconazole as an antifungal prophylactic in HSCT recipients with GVHD and patients with chemotherapy-related neutropenia, no cases of mucormycosis were seen.78,79 Breakthrough mucormycosis, however, was also virtually non-existent in the comparator groups (0–33% in both studies).
other reports, development of mucormycosis during posaconazole prophylaxis has been reported in seven cases, among whom detailed information is available for four.123–127 All four patients were HSCT recipients and had been treated with intensified immunosuppression for GVHD. Posaconazole was used as therapy for suspected invasive aspergillosis in one patient and for confirmed invasive aspergillosis in another, and as prophylaxis in the other two patients. During treatment, three patients developed pulmonary mucormycosis and one developed rhino-orbito-cerebral mucormycosis. When mucormycosis was diagnosed, posaconazole had been used for 11 days, 40 days, 8 weeks, and several weeks, respectively. Three Rhizopus microsporus isolates and one R oryzae isolate were recovered, and the posaconazole MICs were 2.0, 3.0, 3.0, and 0.5 μg/mL. All four patients died despite treatment.

Breakthrough infections in patients receiving long-term prophylactic therapy might be caused by other posaconazole-susceptible organisms, especially Candida spp. The new triazole isavuconazole, which is currently being tested in clinical trials, is available in intravenous and oral formulations and has activity against moulds, tested in clinical trials, is available in intravenous and oral formulations and has activity against moulds, including Mucormycotina.14

Echinocandins

Echinocandins are deemed inactive against Glomeromyctota.45 The incidence of breakthrough mucormycosis ranges from 0% to 0.2% during echinocandin prophylaxis and is 0% during echinocandin treatment.46 Nevertheless, studies have demonstrated that R oryzae possesses a target enzyme for echinocandins, and these agents might have a therapeutic role against mucormycosis when combined with polyenes. Low-dose, but not high-dose, caspofungin improved survival in mice with diabetes, ketoacidosis, and R oryzae infection.47 Additionally, combination regimens of amphotericin B phospholipid complex and caspofungin, and of liposomal amphotericin B and micafungin or anidulafungin improved survival of mice with disseminated mucormycosis compared with each antifungal agent alone, despite a lack of improvement in fungal clearance.48,49

In a retrospective study of 41 cases of biopsy-proven rhino-orbital-cerebral mucormycosis, patients treated with combination amphotericin B phospholipid complex and caspofungin had better response rates than those treated with amphotericin B phospholipid complex alone (100% vs 45%, p=0.02), as well as better Kaplan-Meier survival times (p=0.02).45 Whether the observed survival benefit results from the effect of combination therapy on improved polycye delivery to the cell membrane after disruption of β-glucan in the cell wall, or are due to immunomodulation of the host response remains to be determined.45,50

Non-conventional therapeutic agents

Given the poor outcomes of mucormycosis, several agents with potential activity against Glomeromyctota have been evaluated (table 2).

Synergy with immunosuppressive agents in vitro

A development with potential clinical relevance is that several immunosuppressive agents now in use demonstrate in-vitro activity against Glomeromyctota. Tacrolimus and ciclosporin inhibit calcineurin, and sirolimus and everolimus inhibit mTOR, which leads to immunosuppressive effects.193 These agents also have antifungal activities because fungi such as Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus have homologues of calcineurin and mTOR that play vital parts in fungal growth and pathogenesis. Additionally, synergistic interactions against Candida spp, C neoformans, and Aspergillus spp have been observed between antifungal agents and calcineurin inhibitors or sirolimus.183,192,193 Although the immunosuppressive effects of these immunosuppressants outweigh their antifungal activities, receipt of a calcineurin inhibitor was independently associated with lower mortality in solid-organ transplant recipients with cryptococcosis.194

The MICs of tacrolimus and sirolimus in Glomeromyctota vary dependent on the species tested. With tacrolimus MICs of 0.5–5 μg/mL or lower have been reported for R oryzae, Mucor circinelloides, and Absidia corymbifera, and with sirolimus MICs of 0.25 μg/mL or lower have been reported for R microspores and M circinelloides.195 Another study demonstrated antifungal activity of tacrolimus and ciclosporin against some clinical strains of Rhinopholus pusillus, R microspores, and Mucor spp (MICs 1–2 mg/L).196 Furthermore, an independent association between tacrolimus therapy and a reduced risk of mucormycosis in solid-organ transplant recipients has been proposed to be due to the antifungal attributes of tacrolimus.27

Given the limited therapeutic options for and high mortality in patients with mucormycosis, knowledge of interactions between antifungal agents and immunosuppressants against Glomeromyctota could improve outcomes. Susceptibility testing of tacrolimus in combination with posaconazole for 26 clinical isolates of Glomeromyctota from solid-organ transplant recipients showed synergistic interactions between tacrolimus and posaconazole in 21 (81%).95 Another report also demonstrated consistent synergy between posaconazole and ciclosporin or tacrolimus against Cunninghamhamella bertholletiae, A corymbifera, and A elegans.95 Additionally, a study reported synergy between ciclosporin and various azoles (posaconazole, itraconazole, and ravuconazole).98 Synergy was also seen with tacrolimus for itraconazole and ravuconazole, but the frequencies were notably lower; no synergy was observed between posaconazole and tacrolimus.99

Data on interactions between posaconazole and sirolimus have been contradictory, with one study reporting synergy95 and another antagonism;98 different readings of MICs for endpoints were thought to have led to this difference. In addition to posaconazole,
amphotericin B has interacted synergistically with ciclosporin, sirolimus, and tacrolimus against 90%, 70%, and 30%, respectively, of ten clinical isolates of Glomeromycota, whereas caspofungin has exhibited synergy with tacrolimus against only two (8%) of 26 isolates. Antagonistic interactions have been observed only rarely between these immunosuppressive and antifungal agents.

Iron chelating agents
Since iron is critical for the growth and pathogenesis of Glomeromycota, iron chelators have the potential to treat mucormycosis. Deferasirox, an approved oral iron chelator, has fungicidal effects and interacts synergistically with liposomal amphotericin B against Glomeromycota. The fungicidal activity of deferasirox resulted in iron starvation; the addition of iron completely reversed the fungicidal effects. Additionally, in mice with diabetes, ketoacidosis, and mucormycosis, combination therapy with liposomal amphotericin B and deferasirox significantly improved survival and reduced brain fungal burden, compared with placebo and either drug alone.

Clinical outcomes have been reported for 11 patients with mucormycosis treated with deferasirox (15–20 mg/kg daily, except for one patient treated with 5 mg/kg daily owing to coexisting hepatic disease) in combination with other antifungal agents. Deferasirox was added to the initial antifungal therapy in five patients without disease progression; three were deemed to be cured of the infection and in two signs and symptoms resolved or improved and they were started on maintenance therapy. The remaining six patients received deferasirox as salvage therapy after receiving regimens not containing this drug. No effect was seen in one patient, improved radiographic response but no change in clinical response was reported in another, and cure was reported in four. A double-blind, randomised, placebo-controlled, phase 2 study of safety and efficacy is being done of combined liposomal amphotericin B and deferasirox for mucormycosis.

Colistin
With the emergence of bacteria resistant to currently available antibiotics, colistin, which contains polymyxin E, has emerged as a valuable option for treating infections caused by multidrug-resistant, Gram-negative bacteria. Colistin interacts with lipopolysaccharide and kills these bacteria through disruption of their cell membrane. Polymyxin B has antifungal properties against the yeast Saccharomyces cerevisiae via its effect on the cell membrane and, therefore, whether colistin has similar properties has been studied. Colistin exerted fungicidal activity in vitro against R oryzae by damaging cytoplasmic and vacuolar membranes, which led to the leakage of intracellular contents. Additionally, prophylactic intranasal colistimethate substantially lowered mortality and pulmonary fungal burden in immunosuppressed mice with pulmonary infection, whereas therapeutic intraperitoneal colistimethate had no effect. Whether colistin is useful in the treatment of mucormycosis deserves further investigation.

Statins
In addition to lipid-lowering attributes, statins have beneficial effects on sepsis or infection by modification of the inflammatory cascades of hosts at multiple levels,
and by action against clinically important opportunistic pathogens. These drugs have fungicidal activity against Glomeromycota and act synergistically with other antifungal agents, such as voriconazole. Additionally, statins can induce an apoptosis-like cell death of *Mucor racemosus* through inhibition of protein prenylation. They modulate signal transduction and cytokine transcriptional pathways of the host defenses, and exerting a mediating effect on fungal infections independent of their antifungal activity and, therefore, statins might offer benefits to patients with mucormycosis. Since statins have high MICs for certain *Mucor* species, lipid formulations of amphotericin B interact and, therefore, granulocyte transsumption could improve outcomes. After exposure to *R oryzae*, neutrophils exhibit reduced hyphal damage associated with impaired superoxide anion release compared with that seen after exposure to *A fumigatus*. Nevertheless, in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon γ, the antifungal activities of neutrophils are notably increased. Furthermore, despite some variations in different Glomeromycota species, lipid formulations of amphotericin B interact with human polymorphonuclear leukocytes synergistically by predominantly inducing augmented hyphal damage.

Granulocyte transsumption and cytokines

Mononuclear and polymorphonuclear phagocytes are responsible for the innate immune responses to mucormycosis. Neutropenia seems to be associated with mucormycosis in patients with haematological disease (OR 3·0, 95% CI 1-06–8·51; p=0·05; this feature is seen in 71–100% of patients). Additionally, recovery from neutropenia significantly correlates with an improvement in mucormycosis and, therefore, granulocyte transsumption could improve outcomes. After exposure to *R oryzae*, neutrophils exhibit reduced hyphal damage associated with impaired superoxide anion release compared with that seen after exposure to *A fumigatus*. Nevertheless, in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon γ, the antifungal activities of neutrophils are notably increased. Furthermore, despite some variations in different Glomeromycota species, lipid formulations of amphotericin B interact with human polymorphonuclear leukocytes synergistically by predominantly inducing augmented hyphal damage.

Cytokines play a critical part in activation and recruitment of granulocyte and mononuclear phagocytes.

Efficacy of granulocyte colony-stimulating factor (G-CSF), GM-CSF, and interferon γ as adjunctive agents for invasive mucositis has been evaluated. In addition to the aforementioned improvement of fungicidal activity of polymorphonuclear leukocytes, G-CSF and GM-CSF increase phagocytosis and oxidative burst, and interferon γ induces T-helper-1 immunological response against infection. Moreover, combined GM-CSF and liposomal amphotericin B have notably prolonged survival and reduced fungal burden of the brain tissue in a murine model of systemic mucormycosis compared with liposomal amphotericin B alone. Interferon γ, alone or in combination with liposomal amphotericin B, however, did not yield better results than liposomal amphotericin B alone.

Partial and complete responses have been reported in patients with mucormycosis receiving G-CSF, GM-CSF, and interferon γ as adjunctive agents for invasive mucormycosis. In a review of mucormycosis patients who received granulocyte transsumption or G-CSF, two (29%) of seven and 15 (83%) of 18, respectively, survived. The findings were, however, limited by publication bias and small numbers of cases. Additionally, in a prospective, non-randomised study granulocyte transsumptions were used in patients with haematological malignancies and long-term neutropenia to control life-threatening infections, including one episode of mucormycosis (intervention group), and to prevent recurrence of severe fungal infection, including five episodes of mucormycosis after HSCT or during intensive chemotherapy (preventive group). Disease control was achieved in 36 (82%) of 44 patients in the intervention group and no recurrence was observed in the preventive group.

Hyperbaric oxygen

Hyperbaric oxygen has a direct antifungal effect in vitro through increased production of oxygen-based free radicals. This approach also yields several indirect antimicrobial effects and contributes to tissue healing. These attributes indicate that benefits might be derived from its adjunctive use in the treatment of mucormycosis, but clinical data are limited. In a review of 28 reported cases of mucormycosis, adjunctive hyperbaric oxygen seemed beneficial in patients with diabetes (94% survival).

Surgery

Angioinvasion, thrombosis, and tissue necrosis associated with mucormycosis lead to poor penetration of antifungal agents at the sites of infection and compromise their efficacy. Consequently, debridement of necrotic tissues plays a crucial part in the treatment of mucormycosis. Surgery is independently associated with successful treatment and survival, particularly in rhino-orbital-cerebral and pulmonary mucormycosis, although patients undergoing surgery might have less severe disease or fewer comorbidities than those not undergoing surgery. In rhino-orbital-cerebral disease, aggressive early and repeated surgical excision of the infected craniofacial tissues is the cornerstone of successful treatment. Orbital exenteration might be life-saving after fungal invasion. A so-called conservative-aggressive approach, in which the limits of surgical excision are guided by intraoperative use of frozen sections, has, however, led to favourable outcomes in rhino-orbital-cerebral mucormycosis and uninvolved orbital tissue may be spared. In one study of surgery for pulmonary mucormycosis, mortality was significantly lowered from 55% to 27% (p<0·05). Adequate surgical debridement is also deemed essential for the successful management of colonic and cutaneous mucormycosis.
high, particularly in patients with disseminated (96%) or gastrointestinal (85%) disease, and in HSCT recipients (91%).26 Disseminated disease, renal failure, and infection with *Cunninghamella* spp are independently associated with death, whereas type 1 diabetes and absence of underlying disorders reduce the risk of death.27 In patients with haematological malignancies, active malignancy, and monocytopenia at the time of diagnosis of mucormycosis, the outlook is poor, whereas patients receiving posaconazole-based salvage therapy that leads to neutrophil recovery have a favourable outlook.28 Additionally, delayed initiation of polyene therapy is associated with poor outcomes.44 In solid-organ transplant recipients, renal failure and disseminated disease were independently predictive of treatment failure, whereas surgical resection was associated with treatment success.20

Preventive strategies

In patients with GVHD who are receiving immunosuppressive therapy, and in patients with neutropenia due to chemotherapy for acute myelogenous leukaemia and myelodysplastic syndrome, prophylaxis with posaconazole substantially decreases the incidence of invasive fungal infections, particularly invasive aspergillosis.29,30 In two studies mortality associated with invasive fungal infections was lowered,28,30 although overall mortality was only lowered in one.30 These findings, along with the extended spectrum and good safety profile of posaconazole, suggest this drug is a rational option for prophylaxis in patients with GVHD.115,116

Advances in non-culture-based diagnostic methods and chest CT have led to antifungal drugs being proposed for prevention of invasive mycoses. No effective diagnostic laboratory markers for mucormycosis are, however, currently available and presentation of disease is frequently non-specific. This approach, therefore, is unlikely to be implemented imminently. Nevertheless, empirical use of antifungal agents with activity against mucormycosis is reasonable in patients with defined risk factors for these moulds.21 A drawback of this approach is that non-selective use of posaconazole could increase the risk of fungi becoming resistant to posaconazole115,116 and, therefore, routine use remains controversial.

Conclusions

Mucormycosis is an important opportunistic fungal infection, particularly in patients with haematological disorders, malignancy, and diabetes mellitus, and in those undergoing transplantation. Whether the rising rates in certain populations are related to evolving characteristics of patients or to antimicrobial selection pressure from prescription practices for current antifungal agents deserves further investigation. Liposomal amphotericin B is the preferred therapeutic agent for mucormycosis. Given the limited clinical experience with posaconazole as first-line therapy, this drug should currently be used as second-line or salvage therapy. The combination of polyene with an echinocandin is attractive and its use warrants assessment in well-designed clinical studies. Early diagnosis, reversal of predisposing factors, prompt employment of appropriate antifungal therapy, and surgical debridement are critical for good outcomes. Harnessing the potential of novel synergistic agents, such as immunosuppressants, iron chelators, colistin, statins, and GM-CSF, in combined regimens might improve outcomes. Furthermore, adjunctive therapy with immunomodulatory treatments, such as statins, granulocyte transfusion, and cytokines, has the potential to fine-tune and improve host response to mucormycosis.

Contributors

H-YS reviewed the literature and participated in writing the paper. NS outlined the Review, reviewed the literature, and participated in writing the paper.

Conflicts of interest

NS has received support from Pfizer. H-YS declares that she has no conflicts of interest.

References

