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Background. Because there may be substantial hidden mortality caused by common seasonal pathogens, we
estimated the number of deaths in elderly persons attributable to viruses and bacteria for which robust weekly
laboratory surveillance data were available.

Methods. On weekly time series (1999–2007) we used regression models to associate total death counts in
individuals aged 65–74, 75–84, and ≥85 years (a population of 2.5 million) with pathogen circulation—influenza
A (season-specific), influenza B, respiratory syncytial virus (RSV), parainfluenza, enterovirus, rotavirus, norovirus,
Campylobacter, and Salmonella—adjusted for extreme outdoor temperatures.

Results. Influenza A and RSV were significantly (P < .05) associated with mortality in all studied age groups;
influenza B and parainfluenza were additionallyassociated in those aged ≥75 years, and norovirus was additionally
associated in those aged ≥85 years. The proportions of deaths attributable to seasonal viruses were 6.8% (≥85
years), 4.4% (75–84 years), and 1.4% (65–74 years), but with great variations between years. Influenza occasionally
showed lower impact than some of the other viruses.

Conclusions. The number of different pathogens associated with mortality in the older population increases
with increasing age. Besides influenza A and RSV, influenza B, parainfluenza and norovirus may also contribute
substantially to elderly mortality.

Mortality exhibits clear seasonality mainly caused by an
increase in deaths in elderly persons in winter [1].
However, accurately assigning causes or contributing
causes to a death remains a universal challenge,

especially in elderly persons with underlying disease.
Cause-of-death statistics commonly record the underly-
ing cause of death, whereas direct causes of death, such
as extreme heat in summer and influenza infection in
winter, are often attributed to underlying circulatory
disorders [1, 2]. Estimating the number of deaths attrib-
utable to influenza or other pathogens is therefore
usually performed using regression models [3, 4–9].
These models can incorporate multiple viruses [9–12],
bacteria, pure seasonal trends [7], and temperature [13],
but most studies have not included all of these compo-
nents simultaneously, nor have most incorporated the
time-varying effect of influenza A, for which the severity
depends on the main circulating subtype per season
[10]. In this study, we include all of the above pathogens
and factors and stratify by different age groups (65–74,
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75–84, ≥85 years) to estimate the mortality attributable to
common infections in elderly persons.

Although winter peaks in overall death counts are largely
attributed to influenza and sometimes cold temperatures, the
contribution of other common seasonal viruses and bacteria to
these peaks in mortality in elderly persons is not entirely clear.
Studies of overall mortality mostly studied either respiratory
pathogens (often influenza alone) or gastroenteritis pathogens
separately. Reports show that respiratory syncytial virus (RSV)
may have been greatly underappreciated as a contributor to
overall winter mortality next to influenza A [10, 14–16]. Regard-
ing common gastroenteritis bacteria, a clear link with longer-
term mortality has been demonstrated for Salmonella,
Campylobacter, Yersinia enterocolitica, and Shigella, with the
largest numbers of deaths linked to the first 2 [17]. Other recent
studies suggest an impact on winter mortality due to norovirus-
es, especially in recent years when new variants emerged
[18–20]. Pathogens for which the number of attributable deaths
in elderly is more obscure are rotavirus (mainly known for
mortality in children [21, 22]), enterovirus (for which the mor-
tality is on the rise in non-European countries [23]), and para-
influenza (which may be involved more often in severe
influenza-like illness and acute respiratory tract infections than
previously assumed [3, 24, 25]). Further, low outdoor tempera-
tures [26, 27] and heat waves [28, 29] have been associated with
increases in deaths, but those models were mostly unadjusted
(or only crudely so) for the activity of seasonal infections.

MATERIALS AND METHODS

Per age group, we modeled time series of weekly overall
number of deaths (outcome variable) depending on available
weekly time series of common seasonal viruses and bacteria at
the population level, temperature, and baseline cyclical (ie,
seasonal) trends available from 3 data sources from week 1 of
1999 to week 52 of 2007 (Table 1). Ethical approval was not
required.

Data Sources
Mortality Data
Yearly population size and weekly numbers of deaths covering
the total Dutch population (16.3 million) were obtained from
Statistics Netherlands. We restricted analyses to the elderly
population (aged ≥65 years), aggregating weekly numbers of
deaths by 10-year age groups (65–74, 75–84, and ≥85 years).

Data on Viruses and Bacteria from Laboratory
Surveillance
We used weekly time series for common pathogens for which
stable lab surveillance was available: influenza A, influenza B,
RSV, parainfluenza, enterovirus, and rotavirus from the
Weekly Sentinel Surveillance System of the Dutch Working
Group on Clinical Virology, Campylobacter and Salmonella
from the Laboratory Surveillance of Infections, and norovirus
outbreak notifications [30] from the norovirus outbreak

Table 1. Characteristics of the Study Population and Laboratory Reports (1999–2007)

Age Group, Years Population Sizea
Total Deaths
(1999–2007)

Average Number of Deaths, Mean (IQR)

Per Year Per Week

65–74 1 231 181 230 006 25 600 (24 300–26 800) 490 (455–523)
75–84 768 083 405 826 45 100 (44 900–45 800) 865 (804–916)

≥85 235 811 367 837 40 900 (40 200–41 800) 784 (713–844)

Average Number of Reports, Mean (IQR)

Lab Reportsb Total Reports
(1999–2007)

Per Year Per Week

Influenza A 4484 498 (349–648) 10 (0–10)

RSV 16 237 1804 (1567–2120) 2 (0–2)

Influenza B 825 92 (46–143) 35 (1–43)

Norovirus outbreak 879 98 (30–161) 2 (0–2)

Parainfluenza 3227 359 (325–385) 7 (4–9)
Enterovirus 8128 903 (777–1027) 17 (8–23)

Rotavirus 10 355 1150 (1011–1251) 22 (3–33)

Campylobacter 30 525 3391 (3406–3454) 65 (42–82)
Salmonella (non-Typhi) 15 698 1744 (1580–2047) 33 (19–44)

Salmonella (Typhi) 198 22 (16–26) <1 (0–1)

Abbreviation: IQR, interquartile range.
a Population size and death information from Statistics Netherlands (average of the 1999–2007 time period).
b Pathogen information from Weekly Sentinel Surveillance System of the Dutch Working Group on Clinical Virology and the Laboratory Surveillance of Infections.
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surveillance system. These series are considered to reflect path-
ogens in circulation at the national level [31], although the
coverage varies by pathogen, and young children are probably
overrepresented.

Temperature
Daily mean temperatures were downloaded from the website
of the Royal Netherlands Meteorological Institute and aggre-
gated to the weekly average (from 1 central location because
the climate is similar across the country).

Statistical Analyses
We used regression models with a Poisson error to relate
overall mortality to laboratory pathogen counts. We used the
identity link function because we expect that the association
between the number of pathogens and the expected number
of deaths is additive instead of multiplicative, and a scale pa-
rameter was added to take the overdispersion into account. To
avoid overestimation of the regression coefficients for the
pathogens and to avoid spurious associations, we included
baseline periodic trends, assuming that these sine and cosine
terms represented seasonal variation in mortality of unknown
cause. We did this because many health variables show sys-
tematic and coinciding variation over the course of a year
even if these variables may not be causally related [32]. To
account for the variation in the severity of the main circulating
influenza A strain, we used time-dependent variables that
allowed parameter estimates for influenza A to vary by season.

For each age group, we built a separate model for which we
first checked whether a significant (P≤ .05) increasing or de-
creasing linear trend with time was present and whether a sig-
nificant seasonal trend (sine and cosine terms) was present.
Next, using a forward stepwise selection, we checked which
additional explanatory pathogens contributed significantly to
the pattern in death counts. We also evaluated the association
with the lagged values of the pathogens (up to 4 weeks back-
ward in time), building each increment in the model by
adding all possible lags of all pathogens and selecting the lag
with the best fit (assessed with the deviance) until no more
pathogens contributed significantly to the model. Each appro-
priately lagged pathogen was included in the model only once
(we did not consider lags other than the lag with the best fit).
We then added temperature variables when significant: one
for low temperatures, given by max(0, 5− T), the other for
high temperatures, given by max(0, T − 17). We assumed no
effect between 5°C and 17°C (17°C was the upper cutoff esti-
mated in a study of temperature-related mortality in the Neth-
erlands [13]). We did not consider weekly lags because, to
date, deaths are considered to be acutely linked to tempera-
ture, especially for extremely hot days.

Negative associations were not included to avoid overmod-
eling of the data, with the underlying consideration that

pathogens can cause disease and death but generally do not
decrease disease burden. The best model (per age group) was
determined with 1 overall coefficient for influenza A; for the
final model, we then replaced the overall influenza A variable
with season-specific variables allowing the estimation of
season-specific influenza A coefficients.

The following regression model was used:

Deathst � PoissonðltÞ

lt ¼ b0 þ b1t þ b2 sin
2pt
52

� �
þ b3 cos

2pt
52

� �

þ b4 maxð0; 5� TtÞ þ b5 maxð0;Tt � 17Þ
þ b6InflA1999ðt � lagInflAÞ þ b7InflA2000ðt � lagInflAÞ
þ � � � þ b13InflA2006ðt � lagInflAÞ þ b14P1;ðt�lagP1Þ

þ b15P2;ðt�lagP2Þ þ � � � þ bmPk;ðt�lagPkÞ

In this equation, λt denotes the number of deaths per week
and t takes on discrete values. β0 is the regression parameter
associated with the baseline number of deaths, β1 the parame-
ter associated with a linear trend in time, β2 and β3 the param-
eters associated with the periodic time trends, and β4 and β5
the parameters associated with low and high temperature
effects. Parameters β6, β7,… , βm are the parameters of inter-
est, describing the association between the (lagged) number of
pathogens P1, P2,… , Pk and the expected number of deaths.
For influenza A, each season-year gets its own coefficient.

RESULTS

Characteristics
The weekly number of deaths was highest in the 2 oldest age
groups (490–865 weekly deaths) (Table 1), varying largely by
season, especially in the 2 oldest age groups (Figure 1). Labo-
ratory reports of the different pathogens varied from an
average of 2–65 per week with large interquartile ranges due
to the strong seasonality in their prevalence (Table 1;
Figure 2).

Model Results
The association between mortality and explanatory variables
varied largely by age: the older the age group the more
pathogens (all viruses, mostly active in winter) were significant
(P < .05) predictors of mortality (Table 2). Influenza A and
RSV were associated with mortality in all elderly age groups,
and influenza B and parainfluenza associated with mortality
in the oldest 2 age groups (75–84 and ≥85 years). Additional-
ly, norovirus activity was a predictor of mortality in the oldest
individuals (aged ≥85 years). None of the considered bacteria
were significant (P < .05) in any of the age groups. In the final
models, we adjusted for high temperature only because low
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temperature was not associated (and probably already cap-
tured in the sine and cosine terms).

Influenza A showed the best fit in all age groups when it
was directly associated with mortality (ie, without delay in
subsequent mortality), whereas RSV showed an optimal fit
when deaths were lagged 2–3 weeks after RSV activity. For
parainfluenza, the optimal lag varied by age, with a longer lag
in the oldest age group (3 weeks) (see Table 2). Additionally,
norovirus was associated with subsequent mortality 4 weeks
later in the eldest age group. The fit of the models seemed
adequate (visual inspection) but with seemingly slight period-
icity remaining in the distribution of the residuals (see
Figure 3 for the oldest individuals) for which unknown factors
may be accountable. Observed winter peaks were sometimes
slightly higher than our models predicted, but non-winter
seasons also sometimes showed peaks in mortality not
completely explained by our models.

Estimated Numbers of Attributable Deaths
All Pathogens Combined
In the oldest age group (≥85 years), 6.8% of all mortality was
attributed to multiple winter viruses (influenza A and B, RSV,
parainfluenza, norovirus) (Table 3). This proportion increased
with increasing age (65–74 years: 1.4%; 75–84 years: 4.4%),
and with increasing age, more viruses were significant
(P > .05) predictors of death (but always including influenza A
and RSV). The absolute numbers of deaths associated with the
significant viruses varied by season-year ( July 1st–June 30th),
with the following minimum and maximum estimates: 177–

545 (65–74 years); 1207–2800 (75–84 years), and 1829–3647
(≥85 years) (Table 4, differences of 1 are due to rounding).

Influenza A and RSV
Influenza A and RSV were associated with the largest
numbers of deaths. Overall, the number of deaths attributed
to RSV was almost as high as the number attributed to influ-
enza A (Table 3), but their attributable proportions varied
largely by season-year (Table 4): the yearly numbers of deaths
associated with influenza A were much more variable (eg,
70–1313 or 0.3%–5.9% in the oldest group) than the numbers
attributed to RSV in the oldest group (703–1028 or 3.1%–

4.4%). For 3 of the 8 included complete season-years (2000–
2001, 2005–2006, and 2006–2007), the estimated contribution
of RSV to mortality was considerably higher than that of in-
fluenza A (Table 4, bold script; also Figure 4).

Influenza B
The number of deaths attributable to influenza B varied from
123–862 in the oldest age group and overall was lower than
for influenza A, although interestingly more deaths were at-
tributable to influenza B than to influenza A in the 2000–2001
(very mild influenza A season) and the 2005–2006 seasons
(Table 4). Influenza B was not a significant contributor to
deaths in the youngest age group (65–74 years) (Table 2).

Parainfluenza
In the 2 oldest age groups, the mortality associated with para-
influenza displayed winter peaks that were much smaller than
for most other viruses associated, but as the attributable

Figure 1. Overall weekly mortality by age group, 1999–2007.
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Figure 2. A, Laboratory reports of influenza A, influenza B, and respiratory syncytial virus in the Netherlands, 1999–2007. B, Laboratory reports of
parainfluenza, enterovirus, and influenza C in the Netherlands, 1999–2007. C, Laboratory reports of rotavirus, salmonella, and norovirus (outbreaks).
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deaths were more spread out over the year, the total propor-
tion of those deaths was comparable to or slightly larger than
that for influenza B (1.2% vs 1.1%, and 1.0% vs 0.5%, in the 2
oldest groups, respectively) (Table 3).

Norovirus
Norovirus outbreaks were significantly associated with mortal-
ity in the oldest age group (≥85 years) (Table 3), with peaks
coinciding with the emergence of new norovirus variants

Table 2. Predictors of Overall Mortality From Separate Models per Age Group (1999–2007)

Age Group
≥85 Years 75–84 Years 65–74 Years

Predictor Beta 95% CI Delaya Beta 95% CI Delaya Beta 95% CI Delaya

Intercept 703.81 690–717 NA 841.90 827–855 NA 533.87 527–539 NA
Linear trend 0.06 .03–.10 NA − 0.10 − .14 to− .07 NA − 0.22 − .24 to− .21 NA

Sine 27.44 18.63–36.25 NA 32.98 24.70–41.27 NA 18.84 14.74–22.94 NA

Cosine 41.85 32.25–51.46 NA 45.44 35.88–55.01 NA 20.78 15.38–26.18 NA
Temperature≥ 17°C 2.35 1.97–2.73 NA 1.73 1.37–2.10 NA 0.44 .24–.64 NA

Viruses

Influenza A
1998–1999 1.60 .86–2.34 0 1.06 .33–1.78 0 0.32 − .07 to .72 0

1999–2000 1.59 1.08–2.09 0 0.91 .46–1.36 0 0.21 − .03 to .46 0

2000–2001 0.31 − 1.37 to 2.00 0 0.39 − 1.19 to 1.97 0 0.22 − .66 to 1.10 0
2001–2002 1.26 .56–1.97 0 2.17 1.47–2.87 0 0.61 .24–.98 0

2002–2003 2.42 1.29–3.56 0 2.35 1.27–3.44 0 0.74 .15–1.33 0

2003–2004 2.33 1.66–3.00 0 2.07 1.44–2.70 0 0.76 .42–1.10 0
2004–2005 1.56 .92–2.20 0 1.81 1.21–2.41 0 0.58 .30–.87 0

2005–2006 1.54 .04–3.04 0 1.26 − .15 to 2.67 0 0.32 − .34 to .98 0

2006–2007 1.30 .37–2.23 0 0.40 − .44 to 1.25 0 0.05 − .41 to .50 0
RSV 0.46 .33–.58 3 0.32 .21–.43 2 0.08 .02–.14 0

Influenza B 4.74 2.66–6.81 0 2.68 .76–4.59 0 … …

Parainfluenza 1.39 .34–2.43 3 1.30 .29–2.30 0 … …

Norovirus outbreaks 2.12 .20–4.05 4 … … … … …

Abbreviations: CI, confidence interval; NA, not applicable; RSV, respiratory syncytial virus.
a Delay in deaths (weeks).

Figure 3. Observed and predicted weekly deaths and model residuals in individuals aged ≥85 years. Predicted weekly overall deaths were calculat-
ed using the parameter estimates from a regression model that included influenza A, RSV, influenza B, norovirus outbreaks, parainfluenza, and high
temperature.
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starting in 2002–2003 [33] and with up to 550 norovirus asso-
ciated deaths in 2006–2007, similar to the influenza A burden
that year (Table 4; Figure 4, black areas).

Rotavirus, Enterovirus, Campylobacter, and Salmonella
Rotavirus, enterovirus, Campylobacter, and Salmonella showed
no significant association with mortality in elderly persons, al-
though when leaving out adjustment for high temperature, en-
terovirus did become a significant predictor in the oldest age
group.

DISCUSSION

Our study shows that seasonal mortality in elderly persons is
attributable to multiple viruses, including not only influenza
A and RSV but also influenza B, norovirus, and parainfluenza.
Together, these viruses were associated with up to 6.8% of all
deaths in the oldest age group (≥85 years). Influenza A was
overall, but not always, associated with the highest numbers of
deaths; in some seasons other respiratory viruses (RSV and/or
influenza B and/or parainfluenza) had a greater impact on
mortality. The number of viruses that contributed to overall
mortality increased with increasing age (probably due to in-
creasing vulnerability with age [34]) but always included influ-
enza A and RSV. Overall mortality in the oldest individuals is
also attributed to viruses previously thought to cause mild,
self-limiting illness, such as influenza B and norovirus activity.
The longest delays in death after (noninfluenza) infection are
seen in the oldest age group, which might be due to later cir-
culation of pathogens in seniors compared with the overall lab
trends that we used [11]

As demonstrated by several previous reports [10, 14–16] our
models confirm the large role of RSV in elderly mortality next
to influenza A. In some seasons even more deaths were attrib-
uted to RSV than to influenza A (although all years included

in the study were relatively mild influenza A years). The role
of influenza B may, to date, have been underappreciated
because it is generally considered to cause mild illness. Partic-
ularly in the oldest elderly, the estimated number of influenza
B–attributable deaths was half that estimated for influenza A
or higher during 5 of the 8 seasons. High influenza A vaccina-
tion uptake in elderly persons (approximately 75% throughout
the years under study) might be another reason why some of
the seasons show lower mortality associated with influenza A
than with RSV or influenza B (although vaccination uptake is
not necessarily linked to vaccination effectivity). Further,
whereas we estimated season-specific effects for influenza A,
the coefficients for the other viruses were assumed constant
over the total study period so as not to overstretch the data
with too many variables, although their effect might also vary
with time. Despite its less serious pathogenesis, influenza B
might possibly trigger death in the older and frail populations
suffering from other (chronic) illnesses, or misattribution may
occur if RSV and influenza B circulation in children coincide
with influenza A activity in seniors. We assumed that the RSV
laboratory data reflected RSV activity in all age groups, even
though laboratory diagnostics for RSV are known to be mostly
performed in children [35]. However, we still expect the effect
of RSV to remain large because influenza A and RSV seasons
are not overlapping for the majority of the years under study
(Figure 2) and the overall estimate for influenza A hardly
changed when removing RSV from the models, confirming
that in our model RSV does not compete with influenza
A. With the 3-week lag for RSV in our model, we might lag
RSV into the influenza period and misattribute influenza
deaths to RSV. However when not lagging RSV, the model did
not clearly improve. An additional validation of the best lag
would be future analyses on 2009–2010 data, for which influ-
enza unusually preceded the RSV epidemic instead of vice
versa.

Table 3. Estimated Numbers of Deaths Attributable to Pathogens During Total Study Period (1999–2007) by Age Group, Adjusted for
Temperaturea

≥85 Years 75–84 Years 65–74 Years All Ages (≥65)

Virus Lab Reports Estimated Deaths %b Estimated Deaths %b Estimated Deaths %b Estimated Deaths %b

Influenza A 4484 7201 2.0 6382 1.6 1935 0.8 15 519 1.5
RSV 16 237 7425 2.0 5171 1.3 1305 0.6 13 902 1.4

Influenza B 825 3907 1.1 2209 0.5 6116 0.6

Parainfluenza 3227 4479 1.2 4179 1.0 8658 0.9
Norovirus outbreak 879 1868 0.5 1868 0.2

All viruses 24 881 6.8 17 942 4.4 3241 1.4 46 063 4.6

Abbreviation: RSV, respiratory syncytial virus.
a Adjusted for high temperatures (≥17°C).
b Percentage of total mortality in the respective age group.
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Table 4. Estimated Numbers of Deaths Attributable to Viruses and High Temperature by Age and Season-Year ( July 1st–June 30th)

Season

1999–2000 2000–2001 2001–2002 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007

Absolute Ratea Absolute Ratea Absolute Ratea Absolute Ratea Absolute Ratea Absolute Ratea Absolute Ratea Absolute Ratea

65–74 years

Influenza A 174 0.1 49 0.0 338 0.3 265 0.2 408 0.3 386 0.3 96 0.1 20 0.0
RSV 169 0.1 165 0.1 123 0.1 141 0.1 137 0.1 159 0.1 181 0.1 158 0.1

Temperature ≥17°C 135 0.1 47 0.0 114 0.1 126 0.1 130 0.1 125 0.1 95 0.1 192 0.2

75–84 years
Influenza A 753 1.0 87 0.1 1204 1.6 845 1.1 1114 1.5 1195 1.5 376 0.5 161 0.2

RSV 671 0.9 653 0.9 489 0.7 558 0.7 541 0.7 629 0.8 716 0.9 624 0.8

Influenza B 70 0.1 185 0.3 262 0.4 241 0.3 139 0.2 487 0.6 407 0.5 37 0.0
Parainfluenza 632 0.9 416 0.6 531 0.7 460 0.6 467 0.6 488 0.6 344 0.4 385 0.5

Temperature ≥17°C 528 0.7 185 0.3 448 0.6 492 0.7 509 0.7 491 0.6 370 0.5 751 0.9

≥85 years
Influenza A 1313 5.9 70 0.3 701 3.1 870 3.8 1255 5.4 1031 4.4 459 1.9 519 2.1

RSV 964 4.4 937 4.2 703 3.1 801 3.5 777 3.3 903 3.9 1028 4.3 896 3.6

Influenza B 123 0.6 327 1.4 464 2.0 426 1.8 246 1.1 862 3.7 720 3.0 66 0.3
Parainfluenza 697 3.2 457 2.0 548 2.4 491 2.1 518 2.2 534 2.3 358 1.5 419 1.7

Norovirus outbreak 57 0.3 38 0.2 123 0.5 278 1.2 57 0.2 317 1.4 193 0.8 550 2.2

Temperature ≥17°C 715 3.2 251 1.1 606 2.7 666 2.9 689 3.0 664 2.9 501 2.1 1016 4.1

Bolded numbers indicate that the indicated virus was associated with more deaths than influenza A during that time period.

Abbreviation: RSV, respiratory syncytial virus.
aPer 1000 individuals
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Comparing our influenza mortality results (adjusted for
many pathogens) with other studies in the Netherlands (on
influenza mortality adjusted for RSV activity) [36, 37] is diffi-
cult because those studies used different models in different
(but partially overlapping) time periods and with differently
defined age-group categories. In one overlapping age group
(aged 65–74 years), we found lower estimates of influenza A
attributable deaths than Jansen et al [36], which might be ex-
pected because their model does not distinguish between in-
fluenza subtypes (although we found no association with
influenza B or C in this age category). Compared with influen-
za-like illness mortality [37], we found reasonably similar
magnitudes of influenza-attributable deaths. However, again
the comparison is limited because influenza-like illness is a

measure not distinguishing between influenza subtypes and
may sometimes include some spillover influenza-like illness
caused by other respiratory pathogens.

Another interesting finding is that mortality is also attribut-
ed to norovirus outbreaks in the oldest age group and to para-
influenza in the 2 oldest age groups. When adding shorter
baseline cycles to the model (sine and cosine terms), these
cycles competed with these pathogens. Studies on norovirus
mortality are scarce, but norovirus has recently been suggested
to be associated with gastroenteritis deaths for which a causa-
tive pathogen was unknown (no diagnostics performed) [19,
20], and it has been associated with deaths due to infectious
intestinal disease in another study [18]. Recently, sporadic
deaths have been linked to norovirus, and this possible

Figure 4. Deaths attributable to respiratory and gastrointestinal viruses in individuals aged ≥85 years for 1999–2003 (A) and 2003–2007 (B)
(stacked).
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association has also received media attention after deaths in
nursing homes during norovirus outbreaks [38]. Studies on
the association between parainfluenza and mortality are even
more sparse [3], suggesting that this is either a novel finding
or a spurious association. One recent study suggests the
former because it estimated a surprising association of parain-
fluenza type 2 with deaths in children [3]. Further support for
such an association is a study that demonstrated parainfluenza
is the third most prevalent virus in patients with influenza-like
illness, cocirculating with influenza A and more likely to be
included in mixed infections [24].

Although Campylobacter and Salmonella infections have a
demonstrated association with increased mortality [17], we
found no significant association between these 2 pathogens
and mortality in our observational population study. A proba-
ble reason for this is the relatively small numbers of deaths
associated with these pathogens (compared with the number
of respiratory virus deaths) combined with the fact that these
deaths can occur up to a year after infection (we examined a
maximal lag of 4 weeks). The large variation in time to death
also dilutes the seasonality in Campylobacter- and Salmonella-
associated deaths and thus also dilutes the correlation with the
seasonal occurrence of the initial infections.

As long as many infectious diseases remain unrecognized
and underreported as a (contributing) death cause on death
notification forms, the only way to estimate the proportion of
deaths attributable to infections is indirectly through model-
ing. However, in such models, relating time series with each
other can be tricky because they can be correlated to a certain
degree even if there is no biological association. There is no
absolute solution for this problem, but we chose to add peri-
odic components to our model and additional adjustments for
extreme outdoor temperature. We assumed that these cyclical
dynamics represented a baseline seasonal trend of weekly
deaths that was not explained by the variation in pathogen cir-
culation. Excluding temperature and periodicity could possibly
lead to an overestimation [39] of the pathogen effects. Leaving
out the periodic terms lead to much higher regression param-
eter values for all viruses in all age groups, except for influenza
A, which showed moderately higher estimates in the 2 oldest
age groups (25% and 37% higher when modeled overall; ie,
non–time dependent). But whether adding the periodic com-
ponents helps avoid overestimation of pathogen effects or
whether they actually lead to underestimation of pathogen-
attributable mortality is unknown. However, even though we
included adjustments for periodicity and temperature in our
models, we cannot rule out spuriously generated relationships
caused by collinearity between any of the other included ex-
planatory variables [40]. For this reason, the associations that
we found between mortality and influenza B [41], norovirus
[18, 20], and especially parainfluenza require further confirma-
tion in studies from other countries. Leaving out all pathogens

except influenza A increased the influenza A parameter in half
of the years and decreased it in the other years (≥85 years age
group). For temperature, the use of cutoff values instead of a
continuous temperature variable avoids the introduction of a
relatively perfect periodic component that could lead to trans-
ferring effects away from the pathogens [40]. This would be
inappropriate if the weather attribution is in fact due to (or
partially due to) increasing circulation, transmission, and/or
survival of cold weather pathogens.

An important limitation of our study is that there may be
other pathogens with a (currently) unknown association with
mortality and/or for which robust time series were not avail-
able, which could also play a role in elderly mortality, but
which we cannot detect. These might, however, be included
indirectly by the periodic component in our model. One
example is rhinovirus infection, one of the most common
causes of the common cold, with potentially severe conse-
quences in elderly persons [42, 43]. Another example is Clos-
tridium difficile ribotype 027 infections, which were not
considered in our analyses because they were not available per
week (the time unit in our study) and which only recently sur-
faced with an outbreak in 2005 [44] in the Netherlands. Also
pneumococcus infection may be expected to explain some of
the seasonality in elderly deaths [45].

Further Research
Besides estimating attributable fractions, understanding histor-
ic mortality patterns is also important for understanding mor-
tality dynamics in prospective surveillance systems, which
many countries recently have set up [46, 47]. In our study,
several peaks in winter are largely but not fully explained by
our models and therefore pose interesting points for further
research because they could be associated with hitherto
unknown viruses or factors, represent a diagnostic deficit of
known viruses in certain time periods, or represent a lack of
full understanding of multiple lag times between pathogen ac-
tivity and mortality. Of further interest are the periodic terms
in our model, which represent a pure seasonal trend (unattrib-
uted to any pathogen activity considered in this study) that is
possibly (partially) explained by currently unknown factors or
pathogens.
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